Стабилизаторы мембран тучных клеток описание фармакологической группы в Энциклопедии РЛС

Мембраны клеток

Если можно было бы клетку, как заводную игрушку, разобрать на составные части и разложить их на столе, то больше всего места заняли бы мембраны (от латинского слова membrana — перепонка) — тоненькие, около 10 нм в толщину, белково-липидные пленки, разделяющие в клетке разные отсеки и покрывающие ее снаружи. В шестиграммовой печени мыши, например, умещается несколько квадратных метров мембран! Роль мембран в жизни клетки исключительно важна. В чем же она заключается? Расскажем об этом на примере животной клетки.

Ядро ее отделено от остальной цитоплазмы двумя мембранами. Как и в других случаях, мембрана играет здесь двоякую роль. Она отгораживает ядерное пространство, не допуская проникновения туда других органоидов клетки и очень больших молекул белков. В то же время в ядро легко проникают низкомолекулярные вещества, а также многие белки, в первую очередь ядерные, которые синтезируются в цитоплазме, а функционируют в ядре. В обратном направлении ядерная оболочка должна пропускать через себя РНК и другие вещества, которые синтезируются в ядре и направляются в цитоплазму для управления различными химическими реакциями. Как ядерные мембраны это делают, не совсем еще ясно. В электронный микроскоп в ядерной мембране видны отверстия 40—100 нм, закрытые сложно устроенными крышечками, которые состоят из белков. Вся структура называется ядерной порой. Вероятно, эти поры и пропускают различные молекулы из ядра в цитоплазму и обратно.

Внешняя мембрана ядер непрерывно переходит в мембранную эндоплазматическую сеть — разветвленную систему замкнутых мешочков и канальцев. На внешней стороне этих мембран методом электронной микроскопии обнаружили целый ковер частичек размером около 20—25 нм. Такие мембраны называются шероховатыми в противоположность гладким участкам мембранной сети, на которых частичек нет. Частички эти — рибосомы — место синтеза белков. У большинства клеток поэтому синтез белка происходит преимущественно на поверхности шероховатой эндоплазматической сети. На мембранах этой сети происходит образование и второго важнейшего составляющего мембран — липидов. Здесь же оба компонента собираются в блоки, из которых потом строятся различные клеточные мембраны. Однако, прежде чем попасть на место назначения, продукция эндоплазматической сети накапливается и «дорабатывается» в аппарате Гольджи.

Замечательны мембраны митохондрий, снабжающих клетку энергией. Как и ядро, митохондрии окружены двумя мембранами. Во внутреннюю вмонтированы фрагменты так называемой дыхательной цепи — главной системы превращения энергии. Выработанная энергия запасается тоже на мембранах в виде разности потенциалов. При этом возникает электрическое поле напряженностью 200 тыс. В/см, как в современных ускорителях! Но, вероятно, главную роль в клетке играет наружная мембрана, которая покрывает всю поверхность клетки, так называемая плазматическая. Она устроена очень сложно.

В клетке постоянно идет множество химических реакций. Одни их продукты используются внутри клетки, а другие выводятся наружу. Именно плазматическая мембрана различает эти продукты. Кроме того, чтобы химические реакции в клетках не останавливались, требуется приток все новых и новых веществ. Пропускает их в клетку та же мембрана, четко отличая нужные вещества от ненужных. Но дело не только в том, чтобы отличить нужные вещества, а и в том, чтобы «заставить» их идти в клетку, где их и без того больше, чем снаружи. Для этого необходимо затратить энергию. Клеточная мембрана способна осуществлять такой активный перенос.

Важно не только обеспечить клетку необходимыми веществами, но и создать подходящие условия для их превращений. Если плазматическая мембрана хоть на мгновение исчезнет, клетка останется не защищенной от воздействия внешней среды и большинство химических реакций в ней остановится. Это произойдет потому, что солевой состав наружной среды отличается от внутриклеточного. Так, в клетке ионов калия в сотни раз больше, а ионов натрия в сотни раз меньше, чем снаружи. «Выкачивает» натрий и «накачивает» калий с помощью ферментов и с затратой энергии АТФ тоже плазматическая мембрана.

Чтобы многоклеточный организм нормально функционировал, каждая его клетка должна воспринимать и выполнять общие приказы. Такие приказы могут поступать, например, в виде молекул гормонов. Многие гормоны улавливаются специальными белками — рецепторами клеточной мембраны, и от них уже передаются внутрь клеток соответствующие команды.

Существование любого многоклеточного организма зависит от способности клеточных мембран «узнавать» другие клетки, соединяться с их поверхностью и образовывать упорядоченные структуры — ткани и органы. Если клетки соединяются беспорядочно, разрастаются во все стороны, то возникают опухоли. Наконец, вдоль плазматических мембран нервных клеток и их отростков передаются сигналы в мозг и из мозга.

Принципы действия мембран невозможно понять, не зная их устройства. В начале века полагали, что мембрана — это тонкий слой липидов. Такая точка зрения была подкреплена в 1926 г. экспериментально, когда выяснилось, что у клеток крови — эрйтроцитов (практически не имеющих внутренних мембран) липидов ровно столько, сколько нужно, чтобы покрыть клетки слоем толщиной в две молекулы. Однако вскоре выяснилось, что расчеты не вполне точны. Действительно, в мембранах обнаружили много белков. Добавление белков к двойному липидному слою делает его и по физическим свойствам более похожим на настоящие мембраны. В мембранах есть еще и углеводы, но их меньше, чем белков и липидов. Углеводы соединены с молекулами последних.

Читайте также:  Лечение мазью Вишневского

Когда это выяснили, возник вопрос: а как упакованы молекулы в мембране? Эта задача решается уже 50 лет, и ответ еще окончательно не найден. Было предложено много моделей клеточных мембран. Думали, что белки лежат на липидном слое (бутербродная модель). Предполагали, что мембраны сотканы из молекул липидов вперемешку с белками (модель ковра). Пытались построить модель, в которой целые белковые комплексы в виде шаров частично погружены в липидный слой (мозаичная модель). Сегодня наиболее правдоподобной кажется модель, изображенная на рисунке. Отдельные белковые или белково-углеводные молекулы плавают, как айсберги, в жидком липидном море: одни — по поверхности, другие погружены глубже, а третьи пронизывают липидный слой насквозь.

Такое устройство хорошо согласуется и с данными измерений. Липиды в мембране действительно быстро перемешиваются: соседние молекулы меняются местами за 10 7 с. Двигаются и белки, но медленнее. При слиянии двух клеток их мембранные молекулы перемешиваются. Некоторые белки могут при определенных условиях собираться на одном конце клетки. Такая динамичность позволяет клетке быстро удалять с поверхности прикрепившиеся вещества, например гормоны, подготавливая ее к приему новых молекул.

На рисунке изображена усредненная мембрана. Соотношение липидов и белков в каждом случае может быть иным. Белки во многом определяют специализацию мембраны.

Чем дольше изучают мембрану, тем более сложной она представляется. До сих пор неизвестны важные детали работы ионных каналов, рецепции гормонов, образования разности потенциалов на мембранах митохондрий, механизмы соединения клеток друг с другом.

Клеточная мембрана

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Содержание

  • 1 Основные сведения
  • 2 История исследования
  • 3 Функции
  • 4 Структура и состав биомембран
  • 5 Мембранные органеллы
  • 6 Избирательная проницаемость
  • 7 См. также
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

История исследования

В 1925 году Гортер и Грендель с помощью осмотического удара получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Эксперименты с искусственными билипидными пленками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.
Читайте также:  Приложение, о котором пойдет сегодня речь Grabr — Ирина Баблоян — Эхонет — Эхо Москвы

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1] . Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки [1] . Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K + ) и выкачивает из неё ионы натрия (Na + ).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К + внутри клетки значительно выше, чем снаружи, а концентрация Na + значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Читайте также:  Как избавиться от остриц в домашних условиях за 1 день народными средствами у ребенка и взрослого

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Клеточная мембрана в биологии виды, строение и функции (таблица)

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии,
  • ядро,
  • эндоплазматический ретикулум,
  • комплекс Гольджи,
  • лизосомы,
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.

Ссылка на основную публикацию
Средство от вшей для беременных, чем лечить педикулёз, препараты
Средства от педикулеза для беременных, как лечить заболевание? Во время беременности женщина активно готовится к будущему материнству. Забота о здоровье...
Справится с токсикозом беременных – легко, читать, скачать Азбука здоровья
Что помогает от токсикоза при беременности: способы избавления от сильной тошноты Тошнота и рвота являются частым состоянием после зачатия. Что...
Справочник ветеринарных препаратов, химиотерапевтические препараты
СКОПОЛАМИНА ГИДРОБРОМИД Синонимы: гиосцина гидробромид, бромистоводородный скополамин. Наряду с атропином данный алкалоид содержится в красавке, белене, дурмане и скополии. Получат...
Средство от папиллом в аптеке цена препаратов
Как избавиться от бородавок или папиллом Бородавки и папилломы могут появляться на теле любого человека. Возбудителем этого заболевания является вирус...
Adblock detector