Сердечная мышечная ткань; Студопедия

40.Сердечная мышечная ткань

40.1.Источник развития

Источником развития сердечной мышечной ткани служит миоэпикардиалъная пластинка висцерального листка спланхнотома (целомическая выстилка в шейной части эмбриона). Клетки этой пластинки (миобласты) активно размножаются митозом и постепенно образуют миофиламенты, формирующие миофибриллы. С появлением последних клетки именуются сердечными миоцитами, или кардиомиоцитами). Миофибриллы первоначально не обладают поперечной исчерченностыо и строгой ориентацией в клетке; в дальнейшем они располагаются вдоль ее длинной оси, а их тонкие филаменты прикрепляются к уплотненным участкам сарколеммы (Z-веществу) у концов кардиомиоцитов.

Дифференцировка кардиомиоцитов, в отличие от волокон скелетной мышечной ткани, сочетается с их размножением: гликоген и миофибриллы накапливаются в саркоплазме клеток, которые еще продолжают делиться, уже обладая сократительной способностью. В период деления сердечных миоцитов часть их миофибрилл подверагается распаду с последующей повторной сборкой. В цитоплазме дифференцирующихся кардиомиоцитов нарастает содержание рибосом, цистерн грЭПС, митохондрий. Из-за отсутствия цитотомии при делении некоторые клетки становятся двуядерными. Способность кардиомиоцитов человека к полному митотическому делению утрачивается к моменту рождения или в первые месяцы жизни. Вместе с тем. в этих клетках начинаются процессы полиплоидизации, протекающие, как предполагают, путем обычного, но незавершенного митоза и продолжающиеся в кардиомиоцитах желудочков до 8-12 лет. Выстраиваясь в цепочки, сердечные миоциты не сливаются друг с другом (как это происходит при развитии скелетного мышечного волокна), а формируют сложные межклеточные соединения — вставочные диски, связывающие кардиомиоциты в функциональные волокна.

40.2.Особенности строения

Типичные кардиомиоциты Основной элемент сердечной мышечной ткани — типичные кардиомиоциты (слово «типичные» часто опускают). Это клетки цилиндрической формы, которые стыкуются друг с другом своими основаниями, образуя функциональные волокна. Последние связаны многочисленными анастомозами — за счет того, что в этих участках кардиомиоциты на концах раздвоены и контактируют с клетками сразу двух волокон. Диаметр клеток (а значит, и диаметр волокон) — примерно 20 мкм, что существенно меньше диаметра истинных волокон скелетной мышечной ткани (примерно 50—70 мкм). Длина кардиомиоцитов — около 100 мкм.

Вставочные диски.

Места контактов соседних кардиомиоцитов в функциональных волокнах называются вставочными дисками. На световых препаратах они выглядят как поперечные темные полосы в волокнах. Не надо пугать эти полосы с более мелкой поперечной исчерченностью, обусловленной исчерченностью миофибрилл кардиомиоцитов.

В области вставочных дисков между кардиомиоцитами существуют контакты трех видов:

интердигитации — пальцевидные впячивания клеток друг в друга;

десмосомы — контакты, обеспечивающие более прочное сцепление клеток;

нексусы — контакты, пронизанные гидрофильными каналами и потому обеспечивающие электрическую связь между кардиомиоцитами.

Функциональные волокна окружены базальной мембраной. Таким образом, последняя покрывает лишь боковые поверхности кардиомиоцитов, но не заходит на их основания (торцевые поверхности).

Читайте также:  Чаги настойка от чего назначают, показания, отзывы

Дополнительные клеточные элементы

Миосателлитов или иных камбиальных клеток в сердечной мышечной ткани нет. А сами кардиомиоциты утрачивают способность делиться к моменту рождения ребенка или в первые месяцы жизни. Поэтому при регенерации новые кардиомиоциты и функциональные волокна не образуются. Регенерация осуществляется только путем гипертрофии (увеличения объема) сохранившихся клеток.

Однако кроме типичных (сократительных, или рабочих) кардиомиоцитов, в сердце присутствуют и другие их разновидности: секреторные, а также атипичные кардиомиоциты (составляющие проводящую систему сердца).

Изучена способность к восстановлению мышечной ткани у пациентов с сердечной недостаточностью

Сердечная недостаточность – распространенное состояние, при котором сердечно-сосудистая система не способна обеспечить достаточное кровоснабжение органов. При этом наблюдаются одышка, слабость, утомляемость, отеки, непереносимость физических нагрузок. Причины развития сердечной недостаточности – гипертония, ишемическая болезнь и пороки сердца. Известно, что при этом страдает не только сердечная мышечная ткань, но и скелетные мышцы организма. Они становятся слабее, могут атрофироваться, что вызывает снижение работоспособности и ухудшает качество жизни пациентов: им становится сложно справляться даже с повседневными нагрузками. Для лечения и профилактики атрофии мышц сегодня используют особое питание и лечебную физкультуру, однако до сих пор не найдено средство, способное вернуть пациента к полноценной жизни.

Ткани способны в определенных пределах восстанавливать свою структуру – регенерировать. Это происходит в результате деления и специализации стволовых клеток организма, которые дают начало нескольким типам клеток. Однако при сердечной недостаточности стволовые клетки скелетной мускулатуры повреждаются, их регенераторный потенциал снижается. Это же происходит с возрастом. Стимуляция восстановления скелетных мышц при помощи активации стволовых клеток стала перспективной стратегией лечения мышечных дисфункций. Для этого нужно определить, сохраняет ли скелетная мускулатура пациентов с сердечной недостаточностью способность к регенерации и росту. Такое исследование провели ученые. Они взяли биопсию мышечной ткани от 3 здоровых доноров и 12 пациентов с сердечной недостаточностью. Из полученного материала выделили мРНК для обнаружения маркеров мышечной дисфункции и дальнейших исследований. Также ученые выделили стволовые клетки мышечной ткани для сравнительного анализа потенциала к дифференцировке в группах здоровых доноров и пациентов с сердечной недостаточностью.

Картинка: хроническая активация стволовой клетки мышечной ткани при сердечной недостаточности; дизайн эксперимента. Источник: Рената Дмитриева

Результаты анализа маркеров позволяют сделать вывод о хронической активации работы эмбриональных и неонатальных мышечных белков-миозинов, что в норме не наблюдается у взрослых. Это характерно для хронических патологических состояний.

«Иными словами, в нашем случае усиление работы эмбриональных и неонатальных миозинов является маркером длительного разрушения мышечной ткани у пациентов с хронической сердечной недостаточностью. В норме, когда регенерация проходит успешно, например, при травме, рост экспрессии эмбриональных и неонатальных белков – явление временное», – пояснила Рената Дмитриева, руководитель группы клеточной биологии Института молекулярной биологии и генетики ФГБУ «НМИЦ имени В. А. Алмазова» Минздрава России.

Сравнительный анализ способности к делению и специализации стволовых клеток здоровых доноров и пациентов с сердечной недостаточностью позволяет сделать вывод о том, что мышечная ткань таких больных сохраняет потенциал к росту и регенерации. Следовательно, стволовые клетки мышечной ткани могут рассматриваться в качестве перспективных мишеней для коррекции потери мышечной массы при сердечно-сосудистых заболеваниях.

Читайте также:  Нумерация зубов и схема их расположения в стоматологии, названия и сроки прорезывания

Мышечная ткань: виды, особенности строения и функции

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.
Читайте также:  Средства длечения нервной системы Отисифарм Фармстандарт Афобазол - «Средство для лечения нервной с

Строение и функции сердечной мышечной ткани

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Ссылка на основную публикацию
Сера в ушах о чем хотелось узнать, но стеснялись спросить
Что делать, если у ребенка в ухе серная пробка? Почему появляются серные пробки? Симптомы Можно ли вытащить пробку в домашних...
Сделать компьютерную томографию коленного сустава в Москве, цена
КТ стопы в Москве Томограф Philips Brillians 16 срезов Вес пациента: до 120 Закрытый томограф GE Brivo CT385 16 Томограф...
Сделать МРТ голеностопного сустава в Москве — цена от 2900 руб
МРТ голеностопного сустава Записаться на МРТ Магнитно-резонансная томография (МРТ) голеностопного сустава обеспечивает высокое качество визуализации структур этого сустава, что помогает...
Сервонекс таблетки купить в Ташкенте
Авонекс ® (Avonex) Действующее вещество: Содержание Состав и форма выпуска Характеристика Фармакологическое действие Фармакодинамика Фармакокинетика Показания препарата Авонекс Противопоказания Применение...
Adblock detector